Abstract:

Family car rides have been identified as a main locus for the informal exchange of knowledge
between parents and young children as part of everyday conversations and questioning [4 , 5].
However, there is also a trend of in-car time being a source of tension and boredom for children
[3,7]. To leverage these learning opportunities while enhancing family experiences in the car, we
aim to develop AlSpy, a speech agent capable of playing turn-taking, contextually-aware games
with kids in order to support conceptual learning, commonsense knowledge acquisition, and
promote family bonding. In this paper, we develop new functionality that allows AISpy to query
and process commonsense knowledge concepts for the “I Spy” guessing-game style of play and
generate question-answer pairs using existing Question-Answer Generation models. Overall, this
work will aim to contribute to new generations of interactive technologies that promote
curiosity-driven educational experiences that are both fun and effective.

Introduction:

Family car rides are often a source of tension and boredom for children [3,7], yet they have the
potential to enable playful, social, curiosity-driven experiences. To address this, Hoffman et al.
developed Mileys, “a car game that integrates location-based information, augmented reality and
virtual characters” with the goal of making car rides more interesting for children and promoting
bonding with both their family and their environment [7]. Another car focused mobile
application developed by researchers is nICE: nice In-Car Experience, where passengers work
together to uncover the tiles of an image through a series of minigames [3]. Depending on the
performance during the minigame, a certain number of tiles will be revealed [3]. In terms of
question-answer generation, researchers have developed question-answer generation models
trained on the SQuAD dataset [1,6,8]. SQuAD is a reading comprehension dataset composed of
crowdsourced questions on a set of Wikipedia articles, where the answers are a segment of text
from the corresponding article [9].

We build off of previous research by building an app tailored for use during car rides, capable of
pulling in data from the local environment or provided by a user in order to generate content for
curiosity-driven learning games. Specifically, to trigger play, the user takes a photo of their local
environment and uploads it in the AISpy Android app. Using the information extracted by the
app’s computer vision engine about entities contained in the photo, AISpy is able to formulate a
descriptive clue for the user and guess entities based on a clue given by the user. The aims of my
DREU project are to build off of the existing functionality of AISpy by integrating new modules
that can (a) query and process commonsense knowledge concepts harvested from a database to
(b) retrieve additional information on the entities in the image and (c) offer additional spin-off
learning activities (e.g., playful quizzes, informative stories) beyond the basic guessing style
game play. Our target user group is children 3-5 years of age who have an inherent curiosity and
need to learn fundamental concepts about the world around them.

Prototype

Relation, Clue
| spy something that is
used for displaying books

TN
f & @ 3
(|
T

Used for, displaying books List of possible entities, weights

- a bookcase 1.0

ConceptNet
Objects, possible labels T T

Ve N\

{ Y
Object 1 Bookcase, shelf - \
. I ’)
Object 2 Window Illlls it the bookcase? IIII
Extracted from CV engine \\ /

Guess that matches a label,
has largest weight

Pipeline for querying a user's clue in ConceptNet, with a basic example

ConceptNet is made up of nodes, which are words or phrases and edges, which are units of
knowledge that link one node to another node [10]. AISpy processes a given clue by querying
the attribute as an end node and relation to the entity as the edge in the ConceptNet API, which
returns the result in JSON-LD format [10]. For instance, if the given clue is “I spy something
that is used for displaying books”, AISpy will return start nodes that are connected by the edge
“used for” to the end node “displaying books”. The start nodes are the entities with the property
given by the clue. AISpy compares these entities to the possible labels of each object. If any of
the entities match any of the possible labels, the AISpy guesses the entity with the highest
weight, an indicator of how believable the information is, specified by ConceptNet.

The main issue that we encountered was that sometimes the possible labels for each object were
unrelated to one another. For instance, when we tested the CV engine on a photo of squirrels on
the grass, it labeled one object as being both grass and a squirrel. This made it difficult to rank
objects for guessing, especially in the case where we wanted to allow the user to provide more
clues to the agent. We also tried to program AISpy to also look at synonyms of the clue, but
found that there would be a long runtime, so we did not include it.

Simple Wikipedia

-

Retrieve article on entity Filter text

T
|
|
|
!
\, \/

Query entity

Off the shelf QA model

Overview of the QA generation pipeline

The quiz style game play is introduced when the AISpy makes a correct guess. The
question-answer pairs are generated from a Simple Wikipedia article on that entity. Most of the
off-the-shelf Question-Answer (QA) models that we tested were trained on the SQuAD dataset
or other datasets drawn from Wikipedia articles. SQuAD is a reading comprehension dataset
composed of crowdsourced questions on a set of Wikipedia articles, where the answers are a
segment of text from the corresponding article [9]. When we tried to generate text from the
results of Kiddle, a search engine for kids, the QA models produced very few questions.
Moreover, there was not an accessible API for extracting “kid-friendly” text, so we extracted text
from Simple Wikipedia. To make the text more “kid-friendly”, AISpy is programmed to
calculate the modified LIX readability score of each sentence, filtering out sentences that have a
LIX readability score less than or equal to 25. The LIX formula is originally defined as the sum
of the percentage of long words (more than 6 letters) and the average number of words per
sentence [10], offering a coarse yet easily implemented means of filtering out content that would
be overly complex for a young learner. However, when testing this filtering system on a Simple
Wikipedia article on elephants, we found that very few sentences were meeting the threshold that
we set, thus few usable questions were being generated. When we looked back on the text, we
felt that there were sentences that were reasonable for our target age group and thought that since
“elephant” itself was a long word, it could have caused the readability score of the sentence to be
higher. We therefore modified the formula so that if the entity itself is a long word, it would not

be included in the word count when calculating the readability score. The goal of filtering was to
exclude concepts or words that may be too difficult for our target user group to understand.

One issue that we encountered was that when we were testing out various off-the-shelf models,
the question-answer pairs being generated often did not make sense or were not factually correct.
In one instance, when generating a set of questions and answers from an article on elephants, one
of the questions that was generated was “what types of elephants are larger than females?”” and
the answer generated was “males”. While this question is grammatically correct and technically
true, it is not formulated fluently, in the way a human would express the same idea. An example
of a question that was generated that had an incorrect answer was "Why is an elephant's skull
relatively short to provide better support?" and the answer was “the neck”.

Another issue we encountered was that the app would time out because the QA generation would
take too long. The main factor was that the text being used to generate the questions was too long
and therefore filtering through each sentence would cause the app to time out. We tried to combat
this by only filtering through the first 10 sentences of the text. This approach was able to output a
question-answer pair without timing out; the downside is that it also limits the number of
questions that can be generated, but it typically still produces enough to support a sufficient play
experience.

Future Work

As mentioned previously, we encountered an issue wherein many of our utilized QA models
generated questions that did not make sense and, in some cases, did not generate any questions at
all when given a text fetched from Kiddle. We suspect this can be attributed to the more basic
wording of the text, since most QA models are trained on the SQuAD dataset, which has more
complex wording than the corpora from which we are trying to generate QA pairs. To address
this shortcoming, we might find or curate a dataset of slightly more complex texts in order to
enhance the question generation model or we might also incorporate human interaction into the
loop, to allow the parent or the child to indicate whether or not a particular question is
grammatically incorrect, too difficult, or does not make sense. In the immediate term, this would
enable our app to flag that question in a database as a poor question to avoid in the future; and
further, this data might act as input to a reinforcement learning approach that could be trained to
recognize whether generated questions are appropriate to serve to users.

Another improvement we can explore is rather than dynamically processing the user’s input, we
can also “preprocess” images and store them in the database, along with their corresponding QA
pairs. That way it will make it easier to rank the objects, since we can manually throw out any
labels that are incorrect or do not make sense and the questions can be fetched from the database
rather than having the user wait for the questions to be generated on the fly.

Finally, a top future priority is to conduct user testing of these app features to evaluate childrens’
engagement levels, learning gains, psychological attitudes about their ability as a learner, and
how the family interacts during the game. Using these results, we can understand whether our
approach meets our goals of supporting conceptual learning, commonsense knowledge
acquisition, and family bonding and modify our app accordingly as well as inform the design of
future educational technologies.

References:

[1] Alberti, C., Andor, D, Pitler, E., Devlin, J., & Collins, M. (2019). Synthetic QA Corpora
Generation with Roundtrip Consistency. ArXiv:1906.05416 [Cs]. http://arxiv.org/abs/1906.05416
[2] Anderson, J. (1983). Lix and Rix: Variations on a Little-known Readability Index. Journal of
Reading, 26(6), 490-496. https://www.jstor.org/stable/40031755

[3] Broy, N., Goebl, S., Hauder, M., Kothmayr, T., Kugler, M., Reinhart, F., Salfer, M., Schlieper,
K., & André, E. (2011). A cooperative in-car game for heterogeneous players. Proceedings of the

3rd International Conference on Automotive User Interfaces and Interactive Vehicular
Applications, 167-176. https://doi.org/10.1145/2381416.2381443

[4] Callanan, M. A. (1985). How Parents Label Objects for Young Children: The Role of Input in
the Acquisition of Category Hierarchies. Child Development, 56(2), 508-523.
https://doi.org/10.2307/1129738

[5] Callanan, M. A., & Oakes, L. M. (1992). Preschoolers’ questions and parents’ explanations:
Causal thinking in everyday activity. Cognitive Development, 7(2), 213-233.
https://doi.org/10.1016/0885-2014(92)90012-G

[6] Chan, Y.-H., & Fan, Y.-C. (2019). A Recurrent BERT-based Model for Question Generation.
Proceedings of the 2nd Workshop on Machine Reading for Question Answering, 154—162.
https://doi.org/10.18653/v1/D19-5821

[7] Hoffman, G., Gal-Oz, A., David, S., & Zuckerman, O. (2013). In-car game design for
children: child vs. parent perspective. Proceedings of the 12th International Conference on
Interaction Design and Children, 112—119. https://doi.org/10.1145/2485760.2485768

[8] Lopez, L. E., Cruz, D. K., Cruz, J. C. B., & Cheng, C. (2020). Simplifying Paragraph-level
Question Generation via Transformer Language Models. ArXiv:2005.01107 [Cs].
http://arxiv.org/abs/2005.01107

[9] Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). SQuAD: 100,000+ Questions for
Machine Comprehension of Text. ArXiv:1606.05250 [Cs]. http://arxiv.org/abs/1606.05250
[10] Speer, R., Chin, J., & Havasi, C. (2017, February). Conceptnet 5.5: An open multilingual
graph of general knowledge. In Thirty-first AAAI conference on artificial intelligence.

http://arxiv.org/abs/1906.05416
https://www.jstor.org/stable/40031755
https://doi.org/10.1016/0885-2014(92)90012-G
https://doi.org/10.1145/2485760.2485768
http://arxiv.org/abs/2005.01107
http://arxiv.org/abs/1606.05250

